High Constitutive Overexpression of Glycosyl Hydrolase Family 17 Delays Floral Transition by Enhancing FLC Expression in Transgenic Arabidopsis
نویسندگان
چکیده
Vitis vinifera glycosyl hydrolase family 17 (VvGHF17) is a grape apoplasmic β-1,3-glucanase, which belongs to glycosyl hydrolase family 17 in grapevines. β-1,3-glucanase is not only involved in plant defense response but also has various physiological functions in plants. Although VvGHF17 expression is negatively related to the length of inflorescence in grapevines, the physiological functions of VvGHF17 are still uncertain. To clarify the physiological functions of VvGHF17, we conducted a phenotypic analysis of VvGHF17-overexpressing Arabidopsis plants. VvGHF17-overexpressing Arabidopsis plants showed short inflorescence, similar to grapevines. These results suggested that VvGHF17 might negatively regulate the length of inflorescence in plants. VvGHF17 expression induced a delay of floral transition in Arabidopsis plants. The expression level of FLOWERING LOCUS C (FLC), known as a floral repressor gene, in inflorescence meristem of transgenic plants were increased by approximately 10-fold as compared with wild plants. These results suggest that VvGHF17 induces a delay of floral transition by enhancing FLC expression and concomitantly decreases the length of plant inflorescence.
منابع مشابه
The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis
Seed germination and flowering initiation are both transitions responding to similar seasonal cues. This study shows that ABSCISIC ACID-INSENSITIVE MUTANT 5 (ABI5), a bZIP transcription factor, which plays an important role in the abscisic acid (ABA)-arrested seed germination, is robustly associated with the floral transition in Arabidopsis. Under long-day conditions, overexpression of ABI5 cou...
متن کاملArabidopsis HIGH PLOIDY2 Sumoylates and Stabilizes Flowering Locus C through Its E3 Ligase Activity
Flowering Locus C (FLC), a floral repressor, plays an important role in flowering. The mechanisms regulating FLC gene expression and protein function have been studied extensively; however, post-translational regulation of FLC remains unclear. Here, we identified Arabidopsis HIGH PLOIDY2 (HPY2) as an E3 SUMO ligase for FLC. In vitro and vivo pull-down assays showed that FLC physically interacts...
متن کاملPIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis.
Proper control of the floral transition is critical for reproductive success in flowering plants. In Arabidopsis, FLOWERING LOCUS C (FLC) is a floral repressor upon which multiple floral regulatory pathways converge. Mutations in PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1) suppress the FLC-mediated delay of flowering as a result of the presence of FRIGIDA or of mutations in autonomous pathw...
متن کاملISWI Family Gene, Is Required for FLC Activation and Floral Repression in Arabidopsis
Proper control of the floral transition is critical for reproductive success in flowering plants. In Arabidopsis, FLOWERING LOCUS C ( FLC ) is a floral repressor upon which multiple floral regulatory pathways converge. Mutations in PHOTOPERIODINDEPENDENT EARLY FLOWERING1 ( PIE1 ) suppress the FLC -mediated delay of flowering as a result of the presence of FRIGIDA or of mutations in autonomous p...
متن کاملImproved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1
A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...
متن کامل